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Abstract— In this chapter, we discuss an analytical study of unsteady magneto hydro dynamic flow of an incompressible electrically 

conducting couple stress fluid through a porous medium between parallel plates, taking into account pulsation of the pressure gradient 

effect and under the influence of a uniform inclined magnetic field of strength Ho inclined at an angle of inclination  with the normal to the 

boundaries. The solution of the problem is obtained with the help of perturbation technique. Analytical expression is given f or the velocity 

field and the effects of the various governing parameters entering into the problem are discussed with the help of graphs.  The shear 

stresses on the boundaries and the discharge between the plates are also obtained analytically and their behaviour computationally 

discussed with different variations in the governing parameters in detail. 

Index Terms— couple stress fluids, inclined magnetic field, magneto hydro dynamic flows, porous medium, pulsation of the pressure 

gradient, parallel plate channels and unsteady flows 

——————————      —————————— 

1 INTRODUCTION                                                                     

fluid flow driven by a pulsatile pressure gradient 
through porous media is of great interest in physiology 
and Biomedical Engineering. Such a study has applica-

tion in the dialysis of blood through artificial kidneys or blood 
flow in the lung alveolar sheet. Ahmadi and Manvi [2] derived 
a general equation of motion for flow through porous medium 
and applied it to some fundamental flow problems. Rapits [8] 
has studied the flow of a polar fluid through a porous me-
dium, taking angular velocity into account. The problem of 
peristaltic transport in a cylindrical tube through a porous 
medium has been investigated by El-Shehawey and El-Sebaei 
[7], their results show that the fluid phase means axial velocity 
increases with increasing the permeability parameter k . Afifi 
and Gad [1] have studied the flow of a Newtonian, incompres-
sible fluid under the effect of transverse magnetic field 
through a porous medium between infinite parallel walls on 
which a sinusoidal traveling wave is imposed. The flow cha-
racteristics of a Casson fluid in a tube filled with a homogen-
ous porous medium was investigated by Dash et al [6]. 
Bhuyan Hazarika [4] has studied the pulsatile flow of blood in 
a porous channel in the presence of transverse magnetic field. 
The flows in bends and branches are of interest in a physiolog-
ical context for several reasons. The additional energy losses 
due to the local disturbances of the flow are of interest in cal-
culating the air flow in the lungs and in wave-propagation 
models of the arterial system. 
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The details of the pressure and shear stress distribution on the 
walls of a bend or bifurcation are of interest in the study of 
parthenogenesis because it appears that the localization of 
plaques is related to the local flow patterns. In vascular sur-
gery questions arise, such as what is the best angle for vascu-
lar graft to enter an existing artery in a coronary bypass (Ska-
lak, R. and Nihat Ozkaya, [12]). The theory of laminar, steady 
one-dimensional gravity flow of a non-Newtonian fluid along 
a solid plane surface for a fluid exhibiting slope at the wall has 
been studied by Astarita et al [3]. Suzuki and Tanaka [13] have 
carried out some experiments on non-Newtonian fluid along 
an inclined plane, the flow of Rivlin-Ericksen incompressible 
fluid through an inclined channel with two parallel flat walls 
under the influence of magnetic field has been studied by Ra-
thodand Shrikanth [11]. Rathod and Shrikanth [9] have stu-
died the MHD flow of Rivlin-Ericksen fluid between two infi-
nite parallel inclined plates. The gravity flow of a fluid with 
couple stress along an inclined plane at an angle with horizon-
tal has been studied by Chaturani and Upadhya [5]. Rathod 
and Thippeswamy [10] have studied the pulsatile flow of 
blood through a closed rectangular channel in the presence of 
microorganisms for gravity flow along an inclined channel. 
Hence, it appears that inclined plane is a useful device to 
study some properties of non-Newtonian fluids.  
 In this paper, we discuss an analytical study of un-
steady magneto hydro dynamic flow of an incompressible 
electrically conducting couple stress fluid through a porous 
medium between parallel plates, taking into account pulsation 
of the pressure gradient effect and under the influence of a 
uniform inclined magnetic field of strength Ho inclined at an 
angle of inclinationα  with the normal to the boundaries. 
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2 FORMULATION AND SOLUTION OF THE PROBLEM 

 We consider the unsteady hydro magnetic flow of a 
couple stress fluid through a porous medium induced by the 
pulsation of the pressure gradient. The plates are assumed to 
be electrically insulated. The fluid is driven by a uniform pres-
sure gradient parallel to the channel plates and the entire flow 
field is subjected to a uniform inclined magnetic field of 
strength Ho inclined at an angle of inclination  with the nor-

mal to the boundaries in the transverse xy-plane.  

 We choose a Cartesian system O(x, y, z) such that the 
boundary walls are at z=0 and z=l and are assumed to be pa-
rallel to xy-plane. The equations for steady flow through por-
ous medium are governed by Brinkman’s model. At the inter-
face the fluid satisfies the continuity condition of velocity and 
stress. The boundary plates are assumed to be parallel to xy-
plane and the magnetic field of strength Ho inclined at an angle 
of inclination to the z-axis in the transverse xz-plane. This 

inclined magnetic field on the axial flow along the x-direction 
gives rise to the current density along y-direction in view of 
Ohm’s law. Also the inclined magnetic field in the presence of 
current density exerts a Lorentz force with components along 
O(x, z) direction, The component along z-direction induces a 
secondary flow in that direction while its x-components 
changes perturbation to the axial flow.  

 The steady hydro magnetic equations governing the 
couple stress fluid under the influence of a uniform inclined 
magnetic field of strength Ho inclined at an angle of inclination
  with reference to a frame are, 
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Where, the term 
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  in the above equation gives the ef-

fect of couple stresses. All the physical quantities in the above 
equation have their usual meaning. (u, w) are the velocity 
components along O(x, z) directions respectively.   is the den-

sity of the fluid, eμ  is the magnetic  permeability,  is the 

coefficient of kinematic viscosity, k is the permeability of the 
medium, Ho  is the applied magnetic field.  
Let    iwuq   

Now combining the equations (1) and (2), we obtain 
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The boundary conditions are, (Since the couple stresses vanish 
at both the plates which in turn) implies that  
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Using the non-dimensional variables (dropping asterisks), we 
obtain 
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Corresponding the non-dimensional boundary conditions are 
given by 
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For the pulsation pressure gradient 
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Equation (6.2.8) reduces to the form     
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The equation (14) can be solved by using the following pertur-
bation technique  

t)ωe(iousuu                                                               (15) 

Substituting the equation (15) in (14) and equating like terms 
on both sides 
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 Subjected to the boundary conditions 
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The solutions of the equations (16) and (17) subjected to the 
boundary conditions (18) to (25) give the velocity distribution 
of the fluid under consideration.   
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Where, the constants 821 .C,.........C,C   are given in appendix. 

The shear stresses on the lower and upper plates are given in 
dimension less form as 
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The non-dimensional discharge between the plates per unit 
depth is given by Q 
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3 RESULTS AND DISCUSSIONS 

The unsteady state velocities representing the ulti-
mate flow have been computed numerically for different sets 
of governing parameters namely viz. The Hartmann parame-
ter M, the inverse Darcy parameter D-1 and couple stress pa-
rameter a and their profiles are plotted in figures (1-3) and (4-
6) for the velocity components u and v respectively. For com-
putational purpose we have assumed an angle of inclination 
 and the pulsation of pressure gradient in the x-direction 

and are fixed. Since the thermal buoyancy balances the pres-
sure gradient in the absence of any other applied force in the 
direction, the flow takes place in planes parallel to the boun-
dary plates. However the flow is three dimensional and all the 
perturbed variables have been obtained using boundary layer 
type equations, which reduce to two coupled differential equ-
ations for a complex velocity.  

We notice that the magnitude of the velocity compo-
nent u reduces and v increases with increasing the intensity of 
the magnetic field M the other parameters being fixed, it is 
interesting to note that the resultant velocity experiences re-
tardation with increasing M (Fig. 1 & 4). (Fig. 2 & 5) exhibit 
both the velocity components u and v reduces with increasing 
the inverse Darcy parameter D-1. Lower the permeability of 
the porous medium lesser the fluid speed in the entire fluid 
region.  The resultant velocity experiences retardation with 
increasing the inverse Darcy parameter D-1. Here we observe 
that the retardation due to an increase in the porous parameter 
is more rapid than that due to increase in the Hartmann num-
ber M. In other words, the resistance offered by the porosity of 
the medium is much more than the resistance due to the mag-
netic lines of force. We notice that u exhibits a great enhance-
ment in contrast to v which retards appreciably with increase 
in the couple stress parameter S, but the resultant velocity 
shows and appreciable enhancement with in a (Fig. 3 & 6).  

The shear stresses on the upper and lower plates and 
the discharge between the plates are calculated computation-
ally and tabulated in the tables (1-5). The magnitude of these 
stresses at the upper plate is very high compared to the re-
spective magnitudes at the lower plate. We notice that the 

magnitude of the both stresses x  
and y  increase with in-

creasing the couple stress parameter a on the upper plate and 

lower plates.  On the upper plate, the magnitudes of x  
and 
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y increase with increasing M, but x  
reduces and y en-

hances with increase in D-1, while on the lower plate y  rapid-

ly enhances and x reduces with increase in M.  The reversal 

behavior shows that x  
and y  with increase in D-1 (Tables. 1-

4). The discharge Q reduces in general with increase in the 
intensity of the magnetic field M and lower permeability of the 
porous medium (corresponding to an increase in D-1) and en-
hances the couple stress parameter a (Table. 5). 

4 CONCLUSIONS 

Under the effect of pulsation of pressure gradient, the 
resultant velocity experiences retardation with increasing M, 
where as the resultant velocity experiences retardation with 
increasing the inverse Darcy parameter D-1. When we increase 
the couple stress fluid parameter, the resultant velocity shown 
and appreciable enhancement in the entire flow region. The 
magnitude of these stresses at the upper plate is very high 
compared to the respective magnitudes at the lower plate. The 
discharge Q reduces in general with increase in the intensity of 
the magnetic field M and lower permeability of the porous 
medium and enhances the couple stress parameter a 
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Fig. 1: The velocity profile u for different M with  

D-1=1000, a=1 
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Fig. 3: The velocity profile u for different a with  

D-1=1000, M=2 
.  
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Fig. 5: The velocity profile v for different D-1 with  

M=2, a=1 
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Fig. 4: The velocity profile v for different M with  

D-1=1000, a=1 
.  
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Fig. 2: The velocity profile u for different D-1 with  

M=2, a=1 
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Fig. 6: The velocity profile v for different a with  

D-1=1000, M=2 
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